Avalanche photodiode based detector for beam emission spectroscopy.
نویسندگان
چکیده
An avalanche photodiode based (APD) detector for the visible wavelength range was developed for low light level, high frequency beam emission spectroscopy (BES) experiments in fusion plasmas. This solid state detector has higher quantum efficiency than photomultiplier tubes, and unlike normal photodiodes, it has internal gain. This paper describes the developed detector as well as the noise model of the electronic circuit. By understanding the noise sources and the amplification process, the optimal amplifier and APD reverse voltage setting can be determined, where the signal-to-noise ratio is the highest for a given photon flux. The calculations are compared to the absolute calibration results of the implemented circuit. It was found that for a certain photon flux range, relevant for BES measurements (≈10(8)-10(10) photons/s), the new detector is superior to both photomultipliers and photodiodes, although it does not require cryogenic cooling of any component. The position of this photon flux window sensitively depends on the parameters of the actual experimental implementation (desired bandwidth, detector size, etc.) Several detector units based on these developments have been built and installed in various tokamaks. Some illustrative results are presented from the 8-channel trial BES system installed at Mega-Ampere Spherical Tokamak (MAST) and the 16-channel BES system installed at the Torus Experiment for Technology Oriented Research (TEXTOR).
منابع مشابه
A Geiger-mode avalanche photodiode array for X-ray photon correlation spectroscopy.
X-ray photon correlation spectroscopy (XPCS) provides an opportunity to study the dynamics of systems by measuring the temporal fluctuations in a far-field diffraction pattern. A two-dimensional detector system has been developed to investigate fluctuations in the frequency range of several Hz to kHz. The X-ray detector system consists of a thin 100 microm scintillation crystal coupled to a Gei...
متن کاملMeasurement of Spatiotemporal Structures of Density Fluctuations Using Two-Directional Beam Emission Spectroscopy in LHD
A beam emission spectroscopy (BES) system for density fluctuation measurements having the sight lines passing through the plasma in the toroidal direction was developed in the Large Helical Device (LHD). The coverage of the area sampled by 15 × 100 optical fibers is nearly from the core to the edge on the horizontally elongated poloidal cross section with the spatial pitch of around 1.0 cm, and...
متن کاملBeam emission spectroscopy turbulence imaging system for the MAST spherical tokamak.
A new beam emission spectroscopy turbulence imaging system has recently been installed onto the MAST spherical tokamak. The system utilises a high-throughput, direct coupled imaging optics, and a single large interference filter for collection of the Doppler shifted D(α) emission from the ~2 MW heating beam of ~70 keV injection energy. The collected light is imaged onto a 2D array detector with...
متن کاملAvalanche photodiode A User Guide
Introduction Avalanche photodiode detectors (APD) have and will continue to be used in many diverse applications such as laser range finders, data communications or photon correlation studies. This paper discusses APD structures, critical performance parameter and excess noise factor. For low-light detection in the 200to 1150-nm range, the designer has three basic detector choices the silicon P...
متن کاملBGO readout with photodiodes as a soft gamma-ray detector at −30◦C
BGO is expected to be plausible devices for soft gamma-ray detectors, because of a high detection efficiency for soft gamma-rays. Here we report on the good performance of BGO readout with PIN-photodiode or avalanche photodiode as a soft gamma-ray detector. We confirmed that the signal output of BGO becomes comparable to that of GSO when it is readout with photodiodes due to better matching bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Review of scientific instruments
دوره 81 10 شماره
صفحات -
تاریخ انتشار 2010